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Genotype-based resistance assays are commonly used to
aid treatment in HIV-infected individuals failing anti-
retroviral therapy. The relationship between genotype and
antiretroviral therapy comes mostly from in vitro assays
of the response to a single drugs although there is a
need for a prediction of clinical response to combination
therapy. We have compared three different methods of
analysing genotype data as a predictor of clinical
response in a small clinical cohort of highly antiretro-
viral-experienced individuals failing therapy. No method

performed well beyond 8 weeks into a new therapeutic
regime. A model based on the number of ‘primary’ muta-
tions was statistically significant, but a multiple
regression model, which identified specific mutations
explained threefold more variation in response. Optimal
prediction in this dataset was given by a model obtained
from a classification tree analysis, in which genotype at
amino acid sites 135 and 202 were combined with amino
acid site 184, which explained over 50% of the deviance
in the data and had a classification success of 86%.

Assessment of virological resistance to antiretroviral
drugs has become widespread in the clinical manage-
ment of HIV infection. Guidelines have been published
on when a resistance assay is indicated [1]. While
details vary, interpretation of both phenotypic and
genotypic resistance assays is based on in vitro suscep-
tibility of a viral strain to individual drugs. However,
they are used to attempt to predict clinical outcomes of
therapy involving combinations of three or four drugs,
frequently targeting both reverse transcriptase (RT)
and protease (PR). 

There have been a number of studies of the role of
antiretroviral resistance in clinical responses to anti-
retroviral therapy [2,3] in vitro susceptibility tests.
DeGruttola et al. [4] analysed multiple datasets using a
common methodology: specified mutations associated
with each drug in the regimen were identified and a
‘genotype sensitivity score’ determined on the basis of
the number of drugs for which evidence of resistance

was present; virological response was analysed in terms
of this. This analysis was predicated on the additional
assumption that presence of any of the individual
mutations confers clinically significant resistance to the
maximum extent possible. Others [2,5] these studies
showed that genotypic resistance was in some way
related to clinical response, but they did not attempt to
optimise the interpretation of the genotype data. 

In previous work analysing data from a clinical
trial of nucleoside-experienced patients, ACTG 241,
we [3] analysed all variable amino acid sites in RT
and in a multivariate analysis, we found that, of
known AZT-associated mutations only T215Y/F was
associated with virological response, other known
sites not contributing independently of 215. In addi-
tion, we found that the mutation E44D, not
previously associated with resistance, independently
explained a significant proportion of the variation in
response at week 8. This site was subsequently shown
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in vitro to contribute to nucleoside resistance [6].
Thus, there is reason to believe alternative models
could improve the prediction of clinical response
from genotype data. In this study we have compared
the performance on data from a small clinical cohort
of patients failing combination therapy, of a model
based on primary resistance-associated sites with one
incorporating all variable amino acid sites, and with
an analysis based on a Classification And Regression
Tree (CART) approach based on all variable amino
acids. We found that the latter substantially outper-
forms the first two.

Methods

Patients
This was a retrospective study of patients failing anti-
retroviral (ARV) therapy. Patients were recruited for
this study if they were (1) undergoing combination
antiretroviral therapy involving three or more drugs;
and (2) failing this therapy on the basis of having had
a plasma viral load (pVL) for at least two sequential
viral load assays above 10 000 (70% of patients) or an
initial viral load of 1000, which increased during the
study period. Baseline was defined as the time of
change in ARV therapy. 

Patient demographic characteristics are presented in
Table 1. In brief, all patients were Caucasian, and were
attending either the Genito-Urinary Medicine outpa-
tient clinic at the Royal Infirmary, Edinburgh, UK, or
the Infectious Diseases Department at the Western
General Hospital, Edinburgh, UK. Patients were 65%
male. Among all patients, risk group distribution was:
22% MSM{AUTHOR: DEFINE IN FULL}; 18%
heterosexual contact (male and female), 27% injecting
drug use, 33% unknown. Median age: 38 years (range
25–63); median log10 baseline viral load: 4.6 copies/ml
(2.9–6.6); median CD4 count (cells/ml) 112 (0–670).
All patients had received nucleoside reverse transcrip-
tase inhibitors (NRTI), 40% had received
non-nucleoside reverse transcriptase inhibitors
(NNRTI) and 80% protease inhibitors (PI), with a
median of 3.5 years of ARV therapy (0.25–9).

RT-PCR. Peripheral blood samples were separated into
plasma (stored at –70°C) and leukocytes (stored in
liquid N2, vapour phase). Plasma viral loads were
obtained using the Roche Amplicor HIV-1 Monitor.
Plasma RNA was extracted using the QIAamp Viral
RNA extraction protocol (QIAGEN Ltd, UK).
Extracted RNA (5µl) was reverse transcribed into viral
cDNA via specific viral primer-initiated cDNA
synthesis, using the Expand™ Reverse Transcriptase
protocol (Boehringer Mannheim). cDNA was
aliquoted in two vials, each containing 10 µl, and
stored at –20°C. PCR was performed on the cDNA to
produce a ~1.3 kb pol fragment (encompassing all PR
and codons 1–358 of RT). Subsequent nested PCR was
performed to obtain a PR fragment (297 bp), and a RT
fragment (from codons 26 to 244, 654 bp). 

Sequence analysis. Genotypic analysis was performed
on baseline samples by automated population-based
DNA sequencing, using dRhodamine or Big Dye™
terminator chemistry on an ABI 373A XL machine
(Perkin Elmer, Foster City, Calif., USA). Sequences
were aligned using the Genetic Data Environment
multiple sequence editor [7]. The nucleotide sequences
were translated and amino acids scored as wild-type
(WT) or mutant (MT), relative to the consensus for
clade B (mixtures of WT/MT were coded as MT
because of their potential for rapid evolution to MT).
It should be noted that this was a retrospective study:
genotype information was not available to the clini-
cians at the time the new therapy was chosen. 

Statistical analysis. Patients were included in the statis-
tical analysis if, in addition to the criteria listed above,
they had remained on a stable regime of combination
ARV therapy for at least 8 weeks The outcome variable
for analysis of response to therapy by linear regression
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Table 1. Demographic and baseline laboratory data
{AUTHOR: MALE AND FEMALE PERCENTAGES ADD UP TO
98%, PLEASE CHECK IF OK}

Demographics
Median age (range) 38 years (25–63)
Sex, %
Male 65 
Female 33 
Risk group, %
MSM 22 
Heterosexual 18 
IVDU 27 
Unknown 33 

Baseline laboratory data
Median log10 plasma RNA (range) 4.64 (2.86–6.56)
Median CD4 count (range) 112 (0–672)

ARV therapy
Previous NRTI exposure, % (n) 100 (49)
Previous NNRTI exposure, % (n) 61 (30)
Previous PI exposure, % (n) 74 (36)
Median time from first therapy 3.5 years (0.25–9)
Median time from first NRTI therapy 3.5 years (0.25–9)
Median time from first NNRTI therapy 1.25 years (0.08–3.42)
Median time from first PI therapy 1.83 years (0.08–3.17)

*Demographic data available on 49 of 76 patients.
{AUTHOR: PLEASE DEFINE MSM AND IVDU IN FULL}ARV, antiretroviral therapy;
NRTI, nucleotide reverse transcriptase inhibitor; NNRTI, non-nucleotide reverse
transcriptase inhibitor; PI, protease inhibitor.



was the ratio of the pVL at baseline, defined as the
initiation of a new therapeutic regime, to the pVL at 8,
12 and/or 24 weeks (values were normalized by log10

transformation). For logistic regression analyses an
empirically defined outcome variable (‘responder’) was
adopted, based on the observed distribution of viral
load ratios, which was aimed at maximizing the power
of the analyses. A ratio greater than 4 (for analyses of
amino acid sites in RT) or 3 (for amino acid sites in PR)
was classed as ‘responder’. The criteria adopted for
stepwise regression were: Pin=0.05, Pout=0.10. All R2

values shown are adjusted for the number of parame-
ters in the model. The Bonferroni correction was
applied to probability values for multiple tests. These
analyses were performed using SPSS version 10.0.5.
Regression tree analyses were performed in S-Plus
2000 (MathSoft Inc. Seattle, Wash., USA) on the cate-
gorical response variable defined above and pruned to
the minimum number of nodes that explained at least
50% of the deviance in response.

Results

HIV genotype data – phylogenetic analysis
An alternative amino acid was observed in at least 5%
of sequences at 29 (29%) of the 99 amino acid posi-
tions in PR and 54 (25%) of the 218 amino acid
positions analysed in RT. As a check for sample conta-
mination at any stage in the proceedings [8], a
neighbour-joining phylogenetic analysis was performed
on all sequences obtained from each gene. Only
sequences shown to be distinct from all others by this
test were included in subsequent analyses. 

Sequence variation
Of eight ‘primary’ resistance-associated sites in RT [9],
(amino acids 41, 103, 106, 151, 181, 184, 190 and
215), mutations were present at six among these
patients (range over patients: 0–5); nine of 18
‘secondary’ sites (aa 62, 65, 67, 69, 70, 74, 75, 77, 98,
100, 101, 108, 115, 116, 179, 188, 210, 219) in RT
were variable (range 0–7). For PR, out of  ‘primary’
sites (aa 30, 46, 48, 82 and 90)  mutations were
observed at three (range 0–2) and at nine out of 12
‘secondary’ sites (aa 10, 20, 24, 32, 33, 36, 54, 63, 71,
73, 77, 84; range 1–7). Mutations associated with
resistance to any NRTI were observed in 53/76
patients (70%); to any NNRTI in 36/76 (47%) and to
any PI in 63/76 (83%). There was clearly substantial
variation at sites associated with antiretroviral resis-
tance among these patients, establishing that resistance
is a significant issue for HIV therapy in this popula-
tion. 

Factors associated with response to therapy 

Number of resistance-associated mutations. Patients who
remained on the same therapeutic regime until a pVL
measurement was obtained at any of the three follow-
up time points (8, 12 and 24 weeks from date of
therapy change) were included in the analysis of
response to therapy. We included in this analysis those
individuals for whom complete (PR+RT) genotype and
pVL data were available. For week 8, n=23, a subset of
the datasets for weeks 12 and 24, where n=28.

Linear regression of number of mutations on viro-
logical response revealed major differences in the
proportion of variation explained (R2; Figure 1). Only
for week 8 was 20% or more of the variation in
response explained and only four associations were
significant at P<0.01: RT primary, PR secondary, PR
total (=primary + secondary) and RT total. Inclusion of
PR with RT did not significantly increase the amount
of variation explained. Baseline viral load has in
previous studies been identified as acting indepen-
dently of genotype. In this case it was not found to be
correlated significantly with response when analysed
on its own, nor was it included in a stepwise multiple
regression model. Forcing it into the model increased
the variation explained (adjusted {AUTHOR:
CORRECT?} R2 35% compared with 26% for
primary RT mutations alone) but the change in signif-
icance was slight (P<0.005 vs P<0.007). 

Specific mutations. It is known that for several anti-
retroviral drugs, mutations at only one or two
positions are sufficient to impart resistance. These
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Figure 1. Proportion of variance in response to therapy
explained by models based on numbers of mutations associ-
ated with resistance

Proportion of variance explained by models incorporating primary and
secondary mutations as defined in [9], for reverse transcriptase (RT) and
protease (PR) alone and together. Code for analysed variables: 1=number of
primary mutations; 2=number of secondary mutations; Total=1+2. 



effects could be missed in an analysis based solely on
number of resistance-associated mutations. We there-
fore performed bivariate regression taking each
variable amino acid position as the independent vari-
able to identify those sites which contributed most to
the variation in response at each of the three time
points (RT: Table 2; PR: Table 3). Three sites in RT,
184, 196 and 67 had P values lower than 0.01, and a
further seven of 0.05 or below, but only 184, which on
its own explained over 40% of the variation in
response (P<0.0003), remained significant after correc-
tion for multiple tests. The proportion of variation
explained by individual sites at other time points was
always lower and none remained significant after
correction. For PR, no site remained significant after
correction at any time point. 

To construct a model based on specific amino acid
sites, all sites identified individually in Tables 2 and 3
were entered into stepwise multiple regression
analyses. Significant models were obtained for weeks 8
and 12 based on sites in both RT and PR taken sepa-
rately, and for all three timepoints when both genes
were taken together (Table 4), although the P value for
the week 24 model was only 0.011. For week 8, a
model based on RT alone (aa 184+aa 196+aa211) was
identified, which explained over 70% of the variation
in response. When tested with PR, aa 211 was substi-
tuted by aa 12 in PR, but with no improvement in the
significance, or the proportion of variation explained.
For the week 12 timepoint the best performing model
included two amino acids from PR, aa 12 and aa 63; a
second model based on both genes had a lower R2. 

The predictive value of models based on (a) number
of resistance-associated sites, and (b) on specific amino
acid sites, can be compared on the basis of the propor-
tion of variation in response explained by each (Figure
1 & Table 4). For week 8 this comparison shows the

RT site-based model (type b) explaining nearly three
times as much variation as the best type (a) model. We
have also made this comparison using logistic regres-
sion on the week 8 RT dataset, defining responders as
those cases where the ratio of baseline to week 8 viral
loads was fourfold or higher and including baseline
viral load. The odds ratio per primary resistance-asso-
ciated mutation for model (a) was 0.5 (95% CI:
0.283–0.959), independent of baseline viral load. In
the best model of type (b), the odds ratio for the pres-
ence of a mutation at amino acid 184 was 24 (95% CI:
2–290), taking account of the effect of baseline viral
load, thus in this dataset 184 on its own was  more
important than other ‘primary’ mutations in deter-
mining response.

CART analysis
A third analytical method used to describe the associa-
tion of amino acid variation and response was the
classification/regression tree approach [10]. All vari-
able amino acid sites in RT were included in this
analysis, which was performed on the categorical
response variable (viral load ratio >4=responder).
Once again the best supported model was obtained on
week 8 data for RT. In view of the small number of
individuals to be partitioned, the tree was pruned to
just three nodes, but still explained over 50% of the
deviance in response. The classification tree model was
concordant with the stepwise regression models in that
M184V identified the first node (Figure 2), but added
additional information by including aa 202 as identi-
fying a second split in the 184V group and aa 135 as a
second split in the 184M group. The three-site model
correctly allocated 20/23 individuals (success rate:
86%). Among patients with valine at position 184,
11/13 were failures while 3/10 cases with 184M were
failures. Among the latter, adding information on aa
135 improved precision: 0/5 cases with 184M+135T
were failures, while in the other branch, 3/5 (60%)
patients with 184M+135I were failures. However,
most (9/14, 64%) patients with 135I were also 184V,
in which background variation at aa 135 does not
appear to contribute any significant effect. Thus while
not contributing to the classification among the 184V
group, aa 135 provided additional information about
response of individuals with 184M. A parallel regres-
sion tree analysis, in which the dependent variable is
continuous instead of categorical, again identified
M184V as the split explaining the largest proportion of
the deviance (data not shown). 

Discussion

The aim of this investigation was to determine whether
it was possible to improve the predictive power of
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Figure 2. Classification tree on amino acid sites in reverse
transcriptase for response to therapy at week 8

Classification tree was obtained using the categorical variable ‘Response’ as
defined in the text (>fourfold reduction in viral load). The tree was pruned up
to increase the group sizes at the tips while still explaining 50% of the
deviance. The amino acid sites, which define the nodes and the numbers of
patients within each group, are shown next to the tree, together with the
proportion of failures. 
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resistance genotype data. Previous analyses have
shown significant associations between the presence at
baseline of mutations associated with reduced suscep-
tibility in vitro and clinical response [2,4,5,11]. Some
of these studies used analyses which showed that the
number of such mutations present was positively corre-
lated with response. However, we previously showed in
an analysis of an early clinical trial of combination
therapy [3], that of the five mutations in RT known to
be associated with zidovudine susceptibility, only 215Y
was independently correlated with virological
response. Thus, although addition of 41L to 215Y
confers a substantial reduction in susceptibility in
vitro, it did not add any predictive value to the model
for the patient data. In fact, an unrelated mutation,
44D, not known at the time to be associated with anti-
retroviral resistance, was identified as significantly
associated with response independent of 215.
Subsequently, Hertogs et al. [12] revealed in vitro
effects of this mutation on nucleoside analogue suscep-
tibility, confirming the conclusions of the analysis of
clinical response. 

In the present study, we have attempted to find an

optimal model for the prediction of response to
therapy in a clinical cohort. In this group, number of
primary resistance-associated mutations was signifi-
cantly associated with response at week 8, explaining
about 25% of the variance in response. Testing amino
acid sites individually on this dataset showed that one
site remained significantly associated with response
after correction for repeated tests; this was aa 184 in
RT, with an odds ratio of 24. On its own, this site
explained over 40% of the variance in response, thus
outperforming number of primary mutations. The
optimal model for week 8 included the amino acid sites
196+211 with 184 and explained over 70% of the
variation in response. At first sight it is surprising that
no other ‘primary’ resistance-associated site was inde-
pendently associated with response, which could be
due to the small size of the dataset analysed, but it may
suggest that the high level of association among these
sites means they do not, therefore, provide independent
information, as first seen in the analaysis of ACTG 241
[3]. Amino acid 184 is clearly a strong candidate for a
key mutation in this dataset as over 80% of the study
patients were receiving lamivudine in their current
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Table 2. Correlation of mutations at individual amino acid sites in RT with response to therapy

Amino acid Week 8 Amino acid Week 12 Amino acid Week 24

(WT %) R2 P (WT %) R2 P (WT %) R2 P

184 (44) 43.5 <0.001 178 (88) 23.2 0.009 184 (37) 15.7 0.023
196 (91) 35.3 0.003 118 (56) 14.3 0.029 98 (78) 12.5 0.04
67 (52) 27.4 0.006 207 (80) 15.1 0.03 123 (48) 10.6 0.05
41 (48) 20.3 0.018 41 (30) 13.2 0.035 215 (33) 11.0 0.05
215 (48) 20.3 0.018 67 (56) 11.7 0.045
211 (23) 18.7 0.025 74 (85) 11.4 0.048
178 (81) 19.2 0.027 184 (26) 10.0 0.06
122 (44) 15.7 0.035
123 (48) 14.1 0.043
210 (52) 13.1 0.050

WT, wild-type.

Table 3. Correlation of mutations at individual amino acid sites in protease with response to therapy

Amino acid Week 8 Amino acid Week 12 Amino acid Week 24 

(WT %) R2 P (WT %) R2 P (WT %) R2 P

64 (83) 32.0 0.003 12 (89) 31.9 0.001 64 (71) 17.2 0.018
35 (61) 30.5 0.004 13 (78) 24.7 0.005 20 (78) 13.0 0.036
12 (86) 19.2 0.024 64 (78) 25.1 0.005 35 (63) 10.5 0.055
71 (61) 18.2 0.024 63 (85) 18.3 0.015
20 (70) 18.1 0.025 72 (85) 17.6 0.017
90 (61) 16.7 0.03 54 (74) 15.4 0.025
37 (70) 15.2 0.037
41 (70) 13.5 0.047
54 (74) 13.1 0.05

WT, wild-type



regimen, and approximately 56% of patients had the
184V mutation. 

Thus we have established that some amino acid sites
not included in a list of ‘primary’ mutations are inde-
pendently associated with response, while many that
are in such lists are not independent predictors. We
have also shown that, for this dataset, the use of the
classification tree method [13] offered an improvement
over multiple regression. The reason for the improve-
ment appears to be that the additional sites
individually make a relatively small contribution to the
model but may be associated with a large interaction.
Thus, amino acid 135 does not even appear in Table 2,
however, in the 184M group, classification by amino
acid at position 135 increases the frequency of identifi-
cation of failures in this group by a factor of two. The
reason 135 on its own has no predictive value is that
most cases of 135I are associated with 184V, whose
effect is very large. While this specific observation
requires confirmation in a larger dataset, that the
CART approach is most successful of the three
methods of analysis used may reflect the underlying
match between the bifurcation incorporated in this
method and the bifurcation process inherent in the
evolution of viral genotypes. We note that mutations at
amino acid 135 in RT have been shown to have
measurable effects on NNRTI suceptibility in vitro
[14].

The implication of these observations for interpreta-
tion of genotype data is that for any given dataset there
are probably some amino acid sites which are substan-
tially more important in determining response than
other ‘primary’ sites. This inevitably means that predic-
tions based on number of sites would be less accurate
than those that took account of presence of specific
mutations. Further, substantial improvements can be
made in prediction of response by analyses designed to
take account of the large interaction effects between
amino acid sites that contribute to determining drug
susceptibility phenotype.
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