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The initial virus strains from as many as 12% of individuals with primary human immunodeficiency virus
(HIV) infection have a 50% inhibitory concentration <0.4-fold that of HIV type 1NL4-3 (HIV-1NL4-3) to ritonavir
(hypersusceptibility [HS]). There is also substantial variation in replicative capacity (RC) or an in vitro assay
of the contributions of protease (PR) and reverse transcriptase to viral fitness. In chronically infected
antiretrovirally treated patients, amprenavir HS has been associated with the mutation N88S in PR, but this
mutation is not seen in untreated patients. In this study, virus strains from 182 cases of primary HIV infection
were analyzed, and a highly significant association between HS and low RC (<10% that of HIV-1NL4-3) was
observed (P < 10�6). Multivariate analysis was used to determine the genotypic basis of ritonavir HS,
analyzing all polymorphic amino acid sites and insertions from p7gag through PR. Decision tree models
developed on the entire Gag-plus-PR data set and on PR alone gave overall correct classifications of 73 and
72%, respectively, on cross-validation. They were also able to predict low RC, with sensitivities of 69 and 62%
and specificities of 84 and 70%, respectively. The analysis shows that ritonavir HS in untreated primary HIV
infection is not associated with single mutations but with combinations of amino acids at polymorphic sites and
that the same genotypes which confer HS to PR inhibitors confer low RC. This supports the view that variation
in PR function is directly responsible for variation in fitness among strains in primary infection.

Variation in fitness and other phenotypic traits in human
immunodeficiency virus type 1 (HIV-1) is a natural conse-
quence of the mechanism of retroviral replication and the
error rate associated with reverse transcriptase (9). Advances
in methodologies for assaying susceptibility to antiretroviral
(ARV) drugs (13) have led to improved methods, which have
also reduced the errors associated with estimating replicative
capacity (RC), a component of viral fitness. Use of this single-
cycle assay has revealed a surprising range of values in virus
from ARV-naïve patients, from as low as 6% that of the ref-
erence strain, HIV-1NL4-3, to as much as 50% higher (T. Wrin,
A. Gamarnik, N. Whitehurst, J. Beachaine, J. M. Whitcomb,
N. S. Hellmann, and C. J. Petropoulos, abstr. 24, 5th Int.
Workshop HIV Drug Resistance and Treatment Strategies,
4–8 June 2001). The genetic basis for this variation remains
unclear. It has been known for some time that fitness of viral
strains with reduced susceptibility to ARVs, especially to viral
protease (PR) inhibitors (PIs), can be substantially reduced (3,
10–12). However, those strains carried mutations which are not
seen in untreated individuals, and therefore, a different mech-
anism must be responsible for low RC in wild-type virus.

Hypersusceptibility (HS) to ARV drugs, defined here as
susceptibility �0.4-fold that of HIV-1NL4-3, is another pheno-
type that was first described in the context of patients who had
been treated with a failing ARV regimen; HS to nonnucleoside
reverse transcriptase inhibitors has recently been shown to be
clinically significant (4). In one study, among those who had
acquired a virus strain resistant to nelfinavir, �6% were found
to be HS to amprenavir (18). In this situation, amprenavir HS
was shown to be specifically associated with mutations at
amino acid 88 in PR, particularly N88S (18). However, HS has
also been described in a subset of individuals who have never
received therapy (Wrin et al., Abstr. 5th Int. Workshop on
HIV Drug Resistance), in whom this mutation is absent. We
show here that, among patients with primary HIV infection,
low RC and HS to PIs are directly related, and we obtain a
single decision tree model for the genetic bases of both.

MATERIALS AND METHODS

Patients. The subjects were a subset of those described by Little et al. (7),
selected on the basis of availability of sequence data for both p7/p6gag and PR
and not having �10-fold reduced susceptibility to any PI. They were recruited
between April 1997 and May 2000 at clinics in 10 North American cities and were
predominantly men who reported a history of sex with men. None of the subjects
had received �7 days of prior ARV therapy before study entry and analysis of
ARV susceptibility. ARV susceptibility was determined using HIV PhenoSense.
The genotypes of the p7 and p6 domains of gag and the PR domain of pol were
obtained using ABI automated DNA sequencing.
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Data. All amino acid sites where the most common amino acid was present at
a frequency �98% were included in the analysis. Mutations at each site were
analyzed using single-letter codes.

Techniques. A variety of analytical methods were investigated, including step-
wise logistic regression (SPSS version 10.1) and CART (S-Plus version 6.0) and
the related informatics-based methods of decision trees, PART rules, and sup-
port vector machines implemented in the Weka package (17). CART trees and
C4.5 decision trees produced similar results: the results from the C4.5 decision
trees and support vector machines are given here.

The C4.5 decision trees were generated using a cost-sensitive classifier. A
range of cost values and tip (leaf) sizes were explored for both the ritonavir and
amprenavir analyses, and models were tested by 90-10 cross-validation. In this
process, a model is repeatedly generated based on a 90% sample of cases chosen
at random, and its prediction is tested on the remaining 10%. The tests were run
10 times on independent samples of the data to give the quoted sensitivities and
specificities.

Nucleotide sequence accession numbers. The nucleotide sequences have been
deposited in GenBank under accession numbers AY518941 to AY519122.

RESULTS

Frequency of HS to PIs in primary HIV infection. The dis-
tribution of ritonavir susceptibilities among the 182 cases for
which complete sequence (p7gag-PR) and phenotype data
were available is shown in Fig. 1, excluding cases of transmitted
PI resistance (�10-fold higher than that of HIV-1NL4-3) (7).
The mean susceptibility for ritonavir was 0.9-fold that of HIV-
1NL4-3 (standard deviation, 0.58). Using the 0.4-fold cutoff, 22
(12.1%) cases were HS for ritonavir and 21 (11.5%) were HS
for indinavir. In contrast, only 6 cases were HS for nelfinavir
(3.3%), while 38 (20.9%) were HS for amprenavir. For sa-
quinavir, 28 cases were HS (15.9%), and lopinavir was not
included in these assays. Ritonavir seemed to be broadly rep-
resentative of PI HS, as the 22 ritonavir HS strains included all
6 nelfinavir HS strains, 15 of 21 indinavir HS strains, 19 of 28
saquinavir HS strains, and 18 of 38 amprenavir HS strains.
Thus, the major distinction among PIs, which is between nelfi-
navir and amprenavir, is explained by different mean values
(Fig. 1). The mean susceptibility for nelfinavir is 1.3 times that
for HIV-1NL4-3, so the curve is right shifted relative to ritona-
vir, while the mean for amprenavir is 0.77 times that for HIV-
1NL4-3, so the distribution is left shifted relative to ritonavir,
with many more strains therefore falling below the 0.4-fold
threshold. In most cases where a strain was HS for one drug

and not for another, the susceptibility change values were
within 0.1-fold (e.g., 0.4-fold [HS] for ritonavir but 0.5-fold for
saquinavir). This difference is below the reproducibility of the
assay, so many such cases could be considered to have the same
drug susceptibility. Although errors are inevitable following
the imposition of a threshold, most of the variation in suscep-
tibility lies well above this range, and attempts to analyze
susceptibility as a continuous variable did not generate models
which explained variation at the lower end of the range (data
not shown).

Correlation between PI susceptibility and RC. There was
strong correlation between PI susceptibility and RC among
these primary HIV strains (Fig. 2) (Pearson correlation coef-
ficient, 0.5; P � 10�10). The mean RC was 43% of that of
HIV-1NL4-3 (median, 41%), and the relationship was better
fitted by the quadratic curve shown in Fig. 2 (analysis of vari-
ance, F2 � 43) than by either a straight line or logistic (F1 � 14
for both).

The most striking feature of Fig. 2 is the close correlation at
the bottom end of the range for both variables, to the extent
that of the 13 strains classified as having low RC (i.e., �0.1-fold
the RC of HIV-1NL4-3), 9 were also classified as HS to ritonavir
(exact P, �10�6).

Polymorphism in gag-PR. The fact that there is a high level
of polymorphism in PR in untreated patients has been known
for some time (1, 5). Defining a polymorphic site with the
criterion that the most common amino acid has a frequency
�98%, 20 of the 99 amino acid sites in PR were polymorphic
in this data set. In addition, of the 70 amino acid sites available
for analysis from p7 and p6, 55 (79%) were polymorphic by the
same criterion, and the region included four polymorphic in-
sertions at gag454, gag460, gag478, and gag483 (numbering
according to HIV-1LAI, clone HXB2R). This high level of
variation is all the more remarkable because in the p6 region

FIG. 1. Distribution of ritonavir susceptibilities in 182 primary-in-
fection patients. Cases of transmitted PI-resistant virus (7) (�10-fold
less than the susceptibility of HIV-1NL4-3) were not included in the
analysis.

FIG. 2. Relationship between RC and ritonavir susceptibility. Both
variables are plotted on log10 scales. The continuous curved line rep-
resents the fitted quadratic function, which reaches a maximum at an
RC value of 56% (dashed horizontal line). Points to the left of the
vertical line are cases classified as HS to ritonavir (susceptibility, �0.4-
fold that of HIV-1NL4-3). The points below the solid horizontal line are
cases classified as low RC (�0.1-fold the RC of HIV-1NL4-3).
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the pol reading frame (�1 with respect to that of gag) overlaps
with that of the gag polyprotein for 56 amino acids.

Genetic basis of HS. Initial studies were carried out using
logistic regression with a modified data set of PR sites alone in
which sites with more than one mutant amino acid were rep-
resented by a series of “dummy” binary variables, each corre-
sponding to a single allele. A highly significant (P � 10�7)
model incorporating five amino acid sites was identified (ami-
no acids 12, 33, 37, 45, and 63). At amino acid 37, two amino
acids (E and Y), and at amino acid 63, three amino acids (L, V,
and Q) were independently associated with HS. However, this
model had a sensitivity (rate of correct prediction of HS) of
only 37.5%.

Structured models, such as those used in classification trees
(2, 15), can be more powerful than simple logistic models
where there are complex relationships between parameters. In
addition, the generation of many additional variables in binary
models results in overfitting. In contrast, machine learning
methods, such as decision trees (16, 17), are very flexible and
naturally accept multiple classifications for each variable. In
addition, the models generated are explicit and can be com-
pared with other available information. We also investigated
another machine learning approach, support vector machines,
but they do not readily permit explicit interpretation of the
sites used in partitioning the data. We used two sequence data
sets from the same samples: the first was based on PR alone

and was similar to that used in the logistic regression (above)
but with multiple classifications of mutant amino acids. The
second data set comprised the first set plus the 55 polymorphic
amino acid sites and four polymorphic insertions in p7gag plus
p6gag.

Given the frequency of HS in the data set, it was necessary
to use cost-sensitive classifiers; otherwise, a misleadingly high
overall prediction success rate (76%) could be obtained by
misclassifying all HS cases as wild type, despite giving a sensi-
tivity of 0%. Cost values varying between 6 and 8 for the PR
data set and between 4 and 6 for the Gag-plus-PR data set
were explored to find the model giving maximal sensitivity and
specificity. Trees were pruned to improve generality, and the
models were tested using 90-10 cross-validation (see Materials
and Methods). The overall correct classifications for the opti-
mal PR-based model (Fig. 3A) was 72%; that for the gag-
plus-PR model (Fig. 3B) was 73%. For PR sites alone, the
sensitivity (correct prediction of HS) was 73% and the speci-
ficity (correct prediction of wild type) was 68% (Table 1). For
the model based on Gag-plus-PR data, the sensitivity was
lower (59%) but the specificity was higher (75%). This repre-
sents almost a sixfold enrichment relative to the frequency of
HS in the data set.

Surprisingly, despite the inclusion of all the PR sites in both
data sets, the best model obtained from the full data set in-
cluded only two of the sites in the PR model (57 and 61) and

FIG. 3. Decision tree model describing the genetic basis for ritonavir HS in primary HIV strains. WT, wild type. (A) Based on PR alone. A
cost value of 7.2 and a leaf size of 8 were used to obtain this model (see the text). (B) Based on gag plus PR. Amino acid sites in gag are preceded
by g; �, amino acid deletion at the site. A cost value of 5 and a leaf size of 7 were used to obtain this model. The models are interpreted by checking
the amino acid sites listed and following the prediction shown. Thus (for both), (i) if amino acid 57 is R, then information from amino acid 10 is
used, while if 57 is K, then the wild type is predicted (in this data set, all 23 with this amino acid are wild type); (ii) in panel A, if amino acid 10
is L, position 37 is examined, and if 10 is I or N then the wild type is predicted (of 15 in the data set with the genotype 57K plus 10I/N, again, all
are wild type).
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did not improve on it in terms of the accuracy of prediction of
HS strains. To attempt to explain this, pairwise association
tests were run between the four gag sites and the remaining
four in the PR model. Of the 16 tests performed, one (37 �
g418) was significant (P � 0.04; Fisher’s exact test) but lost
significance when multiple tests were corrected for, leaving one
(10 � g471; P � 0.0053; Fisher’s exact test) which remained
significant when corrected. However, the association did not
involve the amino acid deletion at g471, which is a predictor of
HS, but rather involved the rare amino acids g471A/I/N/P,
which were jointly associated with PR10I more frequently than
expected.

Prediction of HS to other PIs. The ritonavir-derived model
in Fig. 3A also predicts HS to the other PIs tolerably well
(Table 2), with the exception of amprenavir. The sensitivities
(the true-positive rates) for saquinavir and indinavir were
�60% (cf. 73% for ritonavir), while for nelfinavir it was 100%,
indicating that all six nelfinavir HS cases were correctly iden-
tified. The lower sensitivity for amprenavir is not unexpected,
as amprenavir has a left-shifted susceptibility distribution and
nearly twice as many HS cases.

HS and low RC. We have already shown that in this data set
there was a strong association between the phenotypes of low
RC and HS (Fig. 2). Comparison of the predictions of HS and
of low RC for each of the two data sets reveals that the
ritonavir HS PR-based model had a sensitivity of 62% for low
RC and a specificity of 70%, a ninefold enrichment for this
phenotype. The gag-PR based model was actually slightly bet-
ter (69 and 84%, respectively). We conclude that the genotypic
bases of low RC and HS in strains from primary HIV infection
are essentially the same. One possible reason for the associa-
tion could be that it is a consequence of the assay, with strains
with low RC inevitably being more readily inhibited. However,
this would apply to all drugs, not just PIs, and there is no
general increase in susceptibility to other ARVs in these
strains (data not shown). These results suggest that the alter-
ations in PR function associated with HS are responsible for
the low RCs of these strains.

DISCUSSION

We have analyzed the genetic bases of HS and low RC in
strains from individuals with primary HIV infection who were
not infected with drug-resistant strains, in terms of the genetic
variation conferred by mutations at polymorphic amino acid
sites. In previous work, it was shown that such mutations can
be associated with variation in susceptibility to nonnucleoside
reverse transcriptase inhibitors which is observed in primary
HIV infection (6). This conclusion was tested in that study by

in vitro mutagenesis, which confirmed the in vivo observations.
In the present study, however, HS could not be explained by
just one or two polymorphic sites. Stepwise binary logistic
regression on variable amino acids in PR identified a highly
significant model incorporating amino acid sites 12, 33, 37, 45,
and 63; however, it had a sensitivity of only 36%. The presence
at several polymorphic amino acid sites of multiple mutant
amino acids raises two possible approaches. Either all non-
wild-type amino acids are pooled as “mutant,” as in previous
studies (6, 14), or in order to distinguish their individual con-
tributions (in case different mutant amino acids have effects in
different directions), it is possible to consider each amino acid
mutation at a site as a separate variable. However, the addi-
tional variables that this introduces can result in overfitting of
the model so that the results are not generalizable to other
data sets. In addition, this treatment of different amino acid
variants is unlikely to reflect the way in which these mutations
interact at a phenotypic level.

To explicitly incorporate multiple amino acids at the same
site, and to permit analysis of more complex models, a decision
tree approach was used. In order to test the relevance of sites
in gagp6/p7, the data were analyzed with and without the pres-
ence of gag sequences. Surprisingly, it was found that inclusion
of the gag region in the data set did not improve the perfor-
mance of the model. Both data sets yielded models that were
�72% correct overall on cross-validation, and the Gag-
plus-PR model had lower sensitivity on cross-validation than
the PR-based model (Gag plus PR, 59%; PR alone, 73%).

One possible explanation for the lack of improvement in the
model with the additional data from gag is that there were tight
nonrandom associations between mutant amino acids at vari-
able sites in gag and in PR. We therefore performed an anal-
ysis of nonrandom association among amino acids at the sites
involved in the two models. This failed to identify any associ-
ations except one between amino acids 10 in PR and 471 in
gag. However, given the level of variability in PR in this data
set, the addition of the gag sites may not have provided any
further information in the classification of the strains. The 20
amino acid sites included in the PR data set generated 161
distinct PR amino acid sequences among these 182 strains.
This suggests that the PR-based model correctly identified the
mechanistic basis of HS, while the additional sites from gag
merely provided other material to classify the strains.

The extent of functional variation in PR, as defined by assays
of susceptibility to PIs, is substantial. In this data set, from
which transmitted resistant strains (�10-fold reduction in sus-
ceptibility) have been excluded, a 25-fold range in susceptibil-
ity to ritonavir was observed. A large range in RC was also
observed. The relationship between these two is closest at the
lowest values for each: five of the seven with susceptibilities of

TABLE 2. Prediction of HS for other PIs by the ritonavir
HS PR-based decision tree model

Model performance (%)

Ritonavir Indinavir Saquinavir Nelfinavir Amprenavir

Sensitivity 73 62 62 100 40
Specificity 68 71 73 70 69

TABLE 1. Ritonavir HS model performance on
10-fold cross-validation

Model performance (%)

Decision tree SVMa

PR alone gag � PR PR alone gag � PR

Sensitivity 73 59 73 75
Specificity 68 75 72 68

a Support vector machine.
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�0.4 had low RCs. At higher values, the two are not the
same—only 4 out of the observed 13 HS cases with suscepti-
bility values of 0.4 also had low RCs. One possible explanation
for very low average RC values is the inclusion of a mixture of
viable and completely inviable virus, e.g., with termination
codons in coding sequences, in these samples. However, a
frequency reached by a termination codon sufficient to cause
the effect would be detectable in the consensus genotype, in
which mixtures of �25% would become detectable as ambigu-
ities. The frequency of ambiguities in these samples was much
lower than required in this scenario (data not shown).

Despite the low measured RCs, it is clear that all of these
virus strains had successfully established infections within an
average of �70 days prior to being sampled (7). Clearly, they
possess the basic requirements to establish an infection in a
naïve host, and yet many appear to be a long way from the
“optimal” RC value (the median RC for drug-susceptible
strains is �70% of that of HIV-1NL4-3). In an earlier study, R0,
the basic reproductive rate, in acute HIV infection was esti-
mated to be �20, with a range from 7 to 34 (8). R0 has to be
�1 to permit an infection to be self-sustaining. Assuming the
laboratory-measured RC is an additive component of absolute
fitness in vivo, this would suggest that the low-RC strains could
have an R0 of �2, which could still permit them to establish an
active infection. Thus, we conclude that the variation in RC is
associated with the extreme end of a continuous spectrum of
variation in fitness, to which genotypic variation in the PR
sequence contributes heavily.
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