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Objective: To develop an improved model for the genetic basis of reduced suscepti-
bility to tenofovir in vitro.

Methods: A dataset of 532 HIV-1 subtype B reverse transcriptase genotypes for which
matched phenotypic susceptibility data were available was assembled, both as a
continuous (transformed) dataset and a categorical dataset generated by imposing a
cut-off on the basis of earlier studies of in-vivo response of 1.4-fold. Models were
generated using stepwise regression, decision tree and random forest approaches on
both the continuous and categorical data. Models were compared by mean squared
error (continuous models), or by misclassification rates by nested crossvalidation.

Results: From the continuous dataset, stepwise linear regression, regression tree and
regression forest methods yielded models with MSE of 0.46, 0.48 and 0.42 respect-
ively. Amino acids 215, 65, 41, 67, 184 and 151 in HIV-1 reverse transcriptase were
identified in all three models and amino acid 210 in two. The categorical data yielded
logistic regression, classification tree and forest models with misclassification rates of
26, 24 and 23%, respectively. Amino acids 215, 65 and 67 appeared in all; 41, 184,
210 and 151 were also included in the classification forest model.

Conclusion: The random forests approach has yielded a substantial improvement in the
available models to describe the genetic basis of reduced susceptibility to tenofovir in
vitro. The most important sites in these models are amino acid sites 215, 65, 41, 67, 184,
151 and 210 in HIV-1 reverse transcriptase.
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Introduction

Tenofovir disoproxil fumarate (TDF) is an oral prodrug of
tenofovir, an acyclic nucleotide analogue, and is a widely
used and highly potent antiretroviral demonstrating
significant virological activity in both treatment-naı̈ve
and treatment-experienced HIV-1 infected patients [1–3].
Even among patients harbouring drug-resistant HIV-1
infection, treatment with TDF results in a decrease of
approximately 0.6 log10 HIV-1 RNA copies/ml of plasma
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by week 24 [1]. Tenofovir is unique among the other FDA-
approved nucleoside reverse transcriptase inhibitors
(NRTIs) in showing continued activity against a wide
variety of well characterized NRTI resistant-strains [4–6].

Resistance to NRTIs is mediated by mutations that
impair the incorporation of nucleoside analogues into
growing proviral cDNA, thereby preventing premature
termination of chain elongation [7,8] and by mutations
that excise incorporated analogues from prematurely
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terminated proviral DNA strands, allowing for continued
cDNA synthesis [9,10]. The latter, thymidine analogue
mutations (TAMs), include M41L, D67N, K70R,
L210W, T215Y/F and K219Q/E. The occurrence of a
single TAM is usually insufficient to confer significant
levels of resistance, except for T215Y and zidovudine
[11]. However, the accumulation of multiple TAMs leads
to increasing levels of resistance and crossresistance
between all NRTIs, including lamivudine [6,12,13].
Other mutations that confer multinucleoside resistance,
by impairing the incorporation of nucleoside analogues,
include mutations at residue T69, K65R, L74V and the
so-called Q151M pathway [14–16].

Recently, much has been learned about the relationship
between mutations in the HIV-1 genome and in-vitro
phenotypic variation in susceptibility from statistical or
machine learning analysis, including linear regression
[17,18], linear discriminant analysis [19], classification and
regression trees [20,21], artificial neural networks [22] and
support vector machines [23]. These methods provide
automated analytical routines that can process large
volumes of sequence data, from multiple amino acid sites,
matched with in-vitro drug susceptibility phenotype.

Although many models for NRTI in-vitro drug suscepti-
bility phenotype currently exist, there are, however, very
few models specifically for tenofovir and those that
are available [18,24] are based on smaller datasets (up to
350 genotype–phenotype pairs) than those analysed for
the other NRTIs (typically>500 isolates). In this study, we
build and validate interpretable genotypic models pre-
dictive of tenofovir in-vitro drug susceptibility phenotype
on a dataset of 532 genotype–phenotype pairs, using
stepwise linear/logistic regression, decision tree and
random forest analysis. We explore multiple methods to
assess the extent of similarity between the performances of
the resulting models and compare with earlier models of
tenofovir in-vitro susceptibility.
Materials and methods

Genotype–phenotype dataset: collection
We obtained 237 HIV-1 viral sequences from the Stanford
HIV-1 drug resistance database [25] for which the IC50

fold-change of tenofovir was available. Sequences were
aligned using the HyPhy protein coding alignment tool
[26] (HyPhy version 1.0 (http://www.hyphy.org/) to the
reverse transcriptase gene of HIV-1 clone HXB2
(GenBank: accession number K03455) and were translated
into amino acid sequences using an in-house sequence
translator.

To this dataset we added a further 295 HIV-1 genotype–
phenotype pairs for tenofovir. This dataset comprises lists
of reverse transcriptase amino acid mutations (departures
pyright © Lippincott Williams & Wilkins. Unauthor
from consensus) from 105 clinical trial-derived plasma
samples from highly treatment-experienced patients with
multiple TAMs (median three) along with other NRTI,
NNRTI and PI-associated mutations; 46 samples from
treatment-naı̈ve patients failing a regimen of TDF,
lamivudine and efavirenz (n¼ 16 with K65R); and
144 HIV-1 samples from commercial NRTI resistance
panels expressing a variety of NRTI mutations with or
without additional drug resistance mutations.

Phenotypic data for tenofovir were available for all samples
with either the antivirogram (Virco, Mechelen, Belgium)
or the HIV-1 PhenoSense assay (Monogram Biosciences,
South San Francisco, California, USA). Genotypes were
grouped together, regardless of whether they were analysed
by the antivirogram orPhenoSensephenotypic assays as the
available information suggests that differences between
assays are of the same order as the within assay variance
[27,28,29].

Genotype–phenotype dataset: representation
Mutationswere defined as departures from wild-type HIV-
1 subtype B consensus and analysed as binary variables.
Sites containing mixtures of amino acids were treated as
mutant. Use of a binary classification instead of multiple
categories resulted in a negligible loss in predictive power as
previously found [30]. The most prominent example of a
significant site, with multiple mutations having different
effects, is position 215 in reverse transcriptase. T215F was
present in 9% of genotypes in this dataset whereas T215Y
was present in 40%. All sites where the mutant amino acids
were present at frequencies of 4% or lower were excluded
from analysis due to the lack of power to detect an effect.

For regression analysis of continuous data, IC50 fold-
change values were normalized by a Box–Cox power
transformation [31]. Normality was retrospectively
validated by the Shapiro–Wilk test [32]. For classification
analysis, we adopted a threshold of 1.4-fold, which
has been shown to be indicative of reduced virological
response to TDF in treatment-experienced patients
[33–35].

Linear and logistic regression
Forward stepwise selection was used to optimize the
number of amino acid sites included in the logistic and
linear regression models using change in the Akaike
information criterion (AIC) to determine the total number
of sites incorporated. The final models were further
reduced on the basis of the change in deviance at each step.

Decision tree analysis
Decision trees were created by successively splitting the
genotype–phenotype dataset until no further splits
improved the accuracy [20]. For regression analysis, splits
were determined using the least-squares deviation
criterion and for classification analysis, splits were
determined by the information gain metric [36,37]. To
ized reproduction of this article is prohibited.
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avoid overfitting, trees were pruned using 10-fold
crossvalidation (described below).

Random forest analysis
The method of random forests is an extension of decision
tree learning [38] whereby splits are determined on a
random subset of the available amino acid sites at each
leaf. An ensemble, or forest, of such trees is created by
growing individual trees on bootstrap samples of the data.
The final predictions are the unweighted average of the
predictions from the individual trees. The number of trees
in the forest, the total number of amino acid sites
randomly selected at each leaf and the maximum tree
depth was optimized by 10-fold crossvalidation. For
interpretation, the importance of each amino acid site to
predict phenotype is determined. For this purpose, we
used the ‘permutation accuracy importance’ measure,
which estimates the difference in the accuracy of the
forest before and after permuting the amino acids at each
site [38].

Evaluation of the models: nested 10-fold cross-
validation
To assess the performance of the models to predict
phenotype in unseen genotypes we applied standard 10-
fold cross-validation. For the regression models the
generalization error is measured by the MSE and for the
classification models the generalization error is measured
by the percentage of genotypes misclassified and the
model’s sensitivity and specificity. To provide an unbiased
estimate of the generalization error, we used a nested
grid-search to optimize model parameters [39]. To
generate classification models which maximize the trade-
off between sensitivity and specificity we used a nested
ROC analysis (not shown) to optimize the interpretation
of probabilistic model outputs in terms of discrete
‘susceptible’ and ‘resistant’ classifications [40].

Evaluation of existing tenofovir models
To assess how well our models perform in comparison to
existing models for tenofovir resistance, we obtained
phenotype estimates for each genotype in the dataset from
the ANRS-AC11 [41], Rega [42], Stanford HIV-db [43]
and geno2pheno [44] systems. To standardize the
predictions between systems and models, we converted
the multiple prediction levels from the HIVdb, ANRS-
AC11 and Rega systems into either ‘resistant’ or
‘susceptible’ by imposing an ‘ordered’ binary partition
over the levels. To select an optimal partition, we
calculated an ROC curve using 10-fold crossvalidation
and the partition which produced the ‘best’ tradeoff
between sensitivity and specificity was chosen. Finally,
this learning phase was nested within N-fold cross-
validation (N is the total number of genotypes in the
dataset) to obtain an unbiased ‘out-of-sample’ phenotype
prediction for each genotype.
opyright © Lippincott Williams & Wilkins. Unauth
Results

Phenotype fold-change distribution
Analysis of the frequency distribution of tenofovir IC50

fold-changevalues revealeda low levelof variationbetween
samples (Fig. 1) with 75% of the samples having a
susceptibility fold-change of 2.2 or less (1st quartile: 0.7-
fold; median: 1.2-fold; 3rd quartile: 2.2-fold). This
contrasts with most other NRTIs, where the range of
fold-changevalues is much larger [20] and unlike tenofovir,
the fold-change distribution is typically bimodal [20,45]. A
straightforward separation of the strains into tenofovir-
resistant and tenofovir-susceptible groups for classification
analysis was not possible; hence, we adopted a 1.4-fold cut-
off fromprevious clinical data [33–35].Using this threshold
resulted in 44% of our strains being classified as resistant.

Linear and logistic regression models
Forward stepwise logistic regression based on a 1.4-fold
cut-off found a simple model containing only four
previously known resistance-associated amino acid sites:
215, 65, 77, 67 (P< 2.2e�16). Independently these sites
were found to be highly significant (P< 0.001) in
predicting tenofovir resistance (at the 1.4 IC50 fold-
change cut-off). Mutations at site 65 lead to a 2.8-fold
increase in the probability of resistance (compared with
the intercept); similarly for mutations at site 77. Of
the two TAM sites (215 and 67), mutations at 215 had the
largest effect, leading to a 1.9-fold increase in the pro-
bability of resistance. Mutations at 67 increased the
probability of resistance by approximately 1.6-fold.

Forward stepwise linear regression, based on AIC, resulted
in a model with 23 amino acid sites. This model explained
51% of the total variation in IC50 fold-change (R̄2; R2

adjusted for the total number of sites). To identify a more
parsimonious model we compared the difference in
deviance between the fully saturated model (which
includes all amino acid sites with �4% variation) and
the individual models identified at each stage of the
stepwise procedure with the difference in value of the AIC
for each model in the process. Although the AIC decreases
with the inclusion of additional amino acid sites, the
difference in deviance begins to plateau after the first nine
amino acid sites have been added to the model – a clear
indication that the AIC criterion has over-fitted (Fig. 2).
We therefore favour a model containing only the nine
amino acid sites: 215, 65, 67, 184, 210, 228, 41, 39 and 115
(P< 2.2e�16). All of these sites were found to be significant
at the 5% level (P< 0.05) in the re-fitted model. Although
this model contains less than half the sites, it explains almost
as much of the total variation in IC50 fold-change
(R̄

2 ¼ 47% vs. 51% for the 23-site model).

Again, mutations at amino acid site 65 had the greatest
impact on resistance, leading to a 7.8-fold increase in the
normalized-IC50 fold-change (nFC). Mutations at amino
acid site 39 had the smallest impact, leading to a 2.1-fold
orized reproduction of this article is prohibited.
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Fig. 1. Analysis of the frequency distribution of tenofovir IC50 fold-change values. Histogram (a) and density plot (Gaussian
kernel). (b) The vertical line shows the location of the 1.4-fold cut-off: strains with a susceptibility of at least 1.4 -fold relative to the
wild type control strain are classified as resistant.
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Fig. 2. Change in AIC (left) and Deviance (right) during
forward stepwise linear regression. As more sites are added
to the model, the value of AIC continues to decrease. How-
ever, after the first nine sites have been added, the difference
in deviance between the fully saturated model (containing all
sites) and the current model stabilizes.
increase in nFC. The impact of mutations at TAM sites
(215, 67, 210 and 41) was similar for 215, 210 and 41 –
leading to approximately a three-fold increase in nFC.
Mutations at site 67 increased nFC by approximately 3.8-
fold. Mutations at site 184 had a hypersensitizing effect,
causing a reduction in nFC by approximately 2.6-fold.

Decision tree models
Regression tree
On the basis of 10-fold crossvalidation, the best tree for
predicting IC50 fold-change (the regression tree) had eight
splits (Fig. 3). Each split represents an approximate 1.6-fold
differential in IC50, such that the ratio of the geometric
mean of the fold-change values in the right branches to that
in the left branches is approximately 1.6 (range: 0.39–2.7;
median: 1.5). The genotypes with the lowest IC50 fold-
change (0.7) were assigned to the leftmost leaf of the tree:
177 strains with wild-type amino acids at sites 215, 65,
151 and 70. Genotypes with the highest IC50 fold-change
(5.04) were assigned to the rightmost leaf of the tree:
43 strains with mutations at sites 215, 41 and 67 and wild-
type at site 184. An advantage of tree-based models is their
ability to capture interaction effects, in this case the
interaction between amino acids 215 and 184, which has
previously been described [4,34]. Thus, if 215 is mutant
and site 184 is wild-type, then the predicted IC50 fold-
change of TDF is 3.3 (data not shown); in contrast, if 215 is
ized reproduction of this article is prohibited.
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Fig. 3. Regression tree for tenofovir in-vitro drug susceptibility fold-change. Leaf nodes (?) give an estimate of IC50 fold-change
(the mean IC50 fold-change of the genotypes in the training sample sorted to the leaf) for an arbitrary genotype sorted to the leaf. A
genotype is sorted to a leaf as follows: start at the root node (labelled by RT:215) and test residue 215: if 215 is ‘mutant’ follow the
branch labelled by the black dot; otherwise, if 215 is ‘wild-type’, follow the branch labelled by the open circle; repeatedly test for
mutations at the residues specified by each descendent node until a leaf node is reached; and return the value at the leaf. Note that
the RT:184 node is highlighted in bold because it has a hypersensitizing effect within the model. Following its mutant branch leads
to an increase in susceptibility to tenofovir and following its wild-type branch leads to a decrease in susceptibility.
mutant and 184 is mutant, then fold-change is 1.6. In the
latter case, an additional mutation is required before a larger
reduction in tenofovir susceptibility is observed. Of
138 strains with 215 and 184, those with a mutation at
118 as well (n¼ 30) had a mean fold-change of 2.5, a
substantial increase although still less than those that were
wild type at 184. Cases that were wild type at 118 (n¼ 108)
had a mean fold-change of 1.6.

Classification tree
Similar to the regression tree, the best tree for predicting
the IC50 1.4 fold-change cut-off had eight splits (Fig. 4).
Again 215 was at the root with 65 and 151 on one branch
and site 184 and others (including multiple TAMs) on the
other. The hypersusceptibility effect of amino acid site
184 is also reflected in the classification tree: the probability
of a genotype with a mutant 215 and wild-type 184 being
resistant to tenofovir is 77%, while that of a genotypewith a
mutant 215 and mutant 184 being resistant is 51%.

Whereas the amino acid sites included in the regression tree
(215, 184, 41, 67, 65, 151, 118 and 70) have all been
previously associated with NRTI resistance, the classifi-
opyright © Lippincott Williams & Wilkins. Unauth
cation tree includes two novel sites (211 and 207). A high
proportion of the total dataset (49%) had a mutation at site
211, usually lysine. Overall, 211 does not distinguish
resistant from susceptible genotypes – of the 258 genotypes
with a mutation at 211, exactly half were resistant. How-
ever, among the 75 genotypes with mutations at 184 and
215, site 211 does appear to discriminate with 50 (67%)
resistant. Replacing 211 with 210 had a similar, but slightly
lesser effect (not shown). We also observed a novel
association between mutations at site 207 and reduced
tenofovir susceptibility. Of 133 genotypes with a mutation
at 207 (usually glutamic acid) – 74 (56%) were resistant and
59 were susceptible. For the 398 cases that were wild-type
at 207, 158 (40%) were resistant.

Random forest models: permutation accuracy
importance
Permutation accuracy importance (PAI) was used to rank
amino acid sites according to their impact on the capacityof
the random forest models. The most important amino acid
site by far was 215 (Fig. 5(a)). By permuting the
arrangement of the mutations at this site we observed an
approximately 14% increase in the MSE of the forest.
orized reproduction of this article is prohibited.
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Fig. 4. Classification tree for tenofovir in-vitro resistance, where a 1.4-fold cut-off was adopted. Leaf nodes (?) give a resistance
classification for a genotype allocated to the leaf-shaded rectangles denote ‘resistant’ classifications and clear rectangles denote
‘susceptible’ classifications. Genotypes are sorted to a leaf as described in the legend to Fig. 3 [33–35].
Amino acid site 65 had a lesser impact (�8%), followed by
41 (�6%), 67 (�5.5%), 184 (�5%) and 210 (�4%).
Changes to sites 219 and 151 lead to a marginal increase in
MSE (�2%). Similar results were found for the classifi-
cation forest, predicting the IC50 1.4 fold-change cut-off
(Fig. 5(b)). Again the most important amino acid sites were
215 and 65, with changes at these sites leading to a�5.5 and
�3.2% decrease in the percentage of correctly predicted
samples, respectively. Site 41 had a similar impact to site 65,
leading to a decrease of �3%. Site 67 had a lesser impact
(�2%), followed by 184 (�1.5%), 151 (�1.5%) and 210
(�1%).

Model performance: comparison by nested
cross-validation
The MSE was estimated for each regression model by
nested 10-fold crossvalidation (Table 1). The regression
forest model had the lowest MSE (0.42), and would thus be
pyright © Lippincott Williams & Wilkins. Unauthor
favoured over the nine-site linear regression model (0.46)
or the regression tree model (0.48). For the classification
models, the out-of-sample misclassification rates were also
estimated by nested 10-fold crossvalidation. For these
models, the percentage of samples misclassified was similar
for the classification tree (24%) and the randomforest (23%)
and slightly higher for the logistic regression model (26%).
The percentage of correctly predicted resistant samples
(sensitivity) varied between models, being higher for the
classification tree (81%) than either the classification forest
(78%) or the logistic regression model (72%). On the other
hand the classification forest and the logistic regression
model (76%, respectively) were superior to the classifi-
cation tree (68%) incorrectly predicting susceptible samples
(specificity). Overall, the classification forest represents the
most balanced and accurate classifier (its sensitivity and
specificity are high and similar). The threshold adopted
throughout for classifying cases was 1.4-fold, for reasons
ized reproduction of this article is prohibited.
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Fig. 5. Permutation accuracy importance (PAI) of amino acid sites in the random forest models. (a) Regression forest model.
(b) Classification forest. Amino acid sites are ordered according to their impact on the performance of the model. RT:184 is in italics
because it has a hypersensitizing effect within the forest [38].
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Table 1. The estimated out-of-sample prediction accuracy of the
individual models - estimated by nested 10-fold cross-validation.

Regression

Classification

Model MSE
Misclassification

rate Sensitivity Specificity

Linear
regression

0.46 (0.07)

Logistic
regression (%)

26 (4) 72 (10) 76 (10)

Regression tree 0.48 (0.05)
Classification

tree (%)
24 (7) 81% (7) 72% (9)

Regression
forests

0.42 (0.09)

Classification
forests (%)

23 (4) 78 (8) 76 (8)

The standard deviation of the estimates, over the 10 individual folds,
is given in parenthesis. MSE: mean squared error.
given earlier. We extended the study to investigate different
thresholds, looking at cut-offs of 1.2-fold and 1.6-fold. The
models obtained were very similar overall to those
presented, both in predictive performance (4% or less
variation in misclassification rate) and in structure (data not
shown). In allmodels thekey siteswere 215, 65, 184and41,
with 215 the most significant.

Comparison of different models
The Rega (32%), ANRS-AC11 (30%) and geno2pheno
(28%) systems all have a similar proportion of misclassified
samples when tested on this dataset that is clearly higher
than the model obtained here, whereas that for the HIVdb
system (24%) is similar (Table 2). While the geno2pheno
system achieved a higher sensitivity (92%) than the HIVdb
(85%), ANRS-AC11 (75%) and the Rega (52%) systems,
the Rega system had a higher specificity (81%) than the
HIVdb (69%), ANRS-AC11 (66%) and the geno2pheno
(57%) systems. Overall, the classification forest provides a
more balanced classifier (misclassification rate: 23%;
sensitivity: 78%; specificity: 76%) than any existing system.
Discussion

A number of statistical and machine learning models for
HIV-1 drug resistance have been proposed, including
pyright © Lippincott Williams & Wilkins. Unauthor

Table 2. The estimated predictive accuracy of the existing tenofovir
models.

Model
Misclassification

rate (%) Sensitivity (%) Specificity (%)

ANRS-AC11 [41] 30 75 66
Rega [42] 32 52 81
HIVdb [43] 24 85 69
geno2pheno [44] 28 92 57
Classification Forests 23 78 76

The performance of our ‘best’ performing model (classification forest)
is also shown.
linear regression, linear discriminant analysis, decision
trees, artificial neural networks and support vector
machines. The accuracy of the models to correctly
predict in-vitro drug resistance from genotype is typically
very high, explaining 65–89% of the total variation in
IC50 fold-change for all drugs [23], with misclassification
rates ranging between 9.5–13.5% for most drugs [17,20].
Concise and easily interpretable decision tree models are
available for NRTI drug resistance [20]. These models
were able to identify many well known NRTI resistance-
associated mechanisms, including the association between
M184V and high-levels of resistance to lamivudine,
mutations associated with the Q151M pathway (Q151M,
V75I, F77L), L74V and multiple TAMs (M51L, D67N,
K70R, L210W, T215Y/F). There are, however, very few
models for tenofovir in vitro drug susceptibility. The
most recent model, based on a dataset of approximately
350 matched genotype–phenotype pairs [18] performed
substantially less well than those obtained for other drugs
in that study.

We have obtained a series of genotypic models to predict
tenofovir in-vitro drug susceptibility phenotype, using
stepwise linear/logistic regression, decision tree and
random forest analysis. On the basis of a large dataset
(N¼ 532), while permitting identification of the genetic
determinants, they provided accurate predictions of
resistance and susceptibility in approximately 77% of cases,
a substantial improvement on the ANRS-AC11, Rega and
geno2pheno systems. The percentage of cases misclassified
was similar for the random forest model (23%) and for the
HIVdb system (24%). However, the true misclassification
rate of the HIVdb system may be underestimated.
Approximately half the samples used here came from that
source and are likely to have contributed to the data used to
develop the Stanford model causing its misclassification
rate to be biased downwards.

Both statistical and machine learning methods successfully
predicted tenofovir resistance for ‘unfamiliar’ genotypes.
The optimal linear regression model identified nine amino
acid sites: 215, 65, 67, 184, 210, 228, 41, 39 and 115. The
logistic regression model included the sites 215, 65, 77 and
67. The difference in the complexity of the linear and
logistic regression models can be explained in terms of
the response, as the linear regression model explains the
entire range of the phenotype fold-change distribution,
while the logistic regression model explains the phenotypic
variation around the 1.4-fold cut-off only. Similar sites
to those present in the linear and logistic regression
models were also identified in the decision tree models
(Figs 3–5). Overall, seven reverse transcriptase amino
sites were identified in multiple models (215, 65, 41, 67,
184, 151 and 210).

Most of the sites identified in the models have been
previously associated with resistance to the other NRTIs
[46]. Of particular interest is the occurrence of multiple
ized reproduction of this article is prohibited.
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TAMs: 41, 67, 70, 210 and 215. Response to TDF is
significantly reduced among patients with HIV-1 con-
taining at least 3 TAMs, inclusive of the M41L or L210W
mutations [33,35]. We also know that tenofovir selects
for the K65R mutation in vitro and in about 2–4% of
antiretroviral-experienced patients in vivo; this mutation
results in a three-fold to four-fold decrease in tenofovir
in-vitro susceptibility and it is correlated with impaired
virological response to TDF [2,4]. Although the K65R
mutation is relatively rare in clinical cohorts, its frequency
has increased since the introduction of tenofovir into
clinical practice: from �0.4% in 1998 to 3.6–7.3% in
2003–2005 [47,48]. The potential for further increases in
K65R prevalence has implications for NRTI-based
therapy, since zidovudine is the only NRTI to retain
activity against K65R-mutant strains [47].

In contrast to the rather rare appearance of K65R in
patients, M184V and T215Y/F are the most common
NRTI resistance mutations [48]. Both mutations appear
in all models identified in this study, with 215 at the root
of all trees. This is consistent with the results from a
smaller study that included tree-based models for
tenofovir in-vitro resistance [24]. Thus, T215Y/F appears
to be highly significant for predicting tenofovir resistance.
This is a key finding because T215Y/F can appear in as
many as 42% of patients receiving antiretroviral therapy
[49].

Unlike the other NRTI-associated mutations, the presence
of M184V enhances the susceptibility of HIV-1 to
tenofovir, consistent with previous in-vitro studies
[4,50,51]. This hypersusceptibility effect is explicit in both
our regression and classification trees (Figs 3 and 4). There
is a more complex aspect to the relationship between
215 and 184, whereby a mutation at 118 counteracts the
hypersusceptibility conferred by M184V/I in the regresion
tree model. Although this site does not often appear in
NRTI models, these observations are consistent with
previous results on the effect of mutations at 118 on
lamivudine susceptibility [52]. These interaction effects
are explicit in the tree models, however, when the 215/
184 interactions was specified as a covariate in stepwise
linear and logistic regression analysis it was not included in
the final model, and when added to the regression models,
it gave no improvement. Finally, none of our models
included the K65R/M184V interaction [53], but only
2% of strains in our dataset had mutations at both site
65 and 184.

Linear regression identified two novel amino acid sites:
39 and 228. These mutations have been previously
associated with NRTI resistance and drug experience in
database analyses [54]. Two further novel sites were
identified in the classification tree: 207 and 211. All four
of these sites were also identified by the classification
forest and sites 39, 207 and 228 were identified by the
opyright © Lippincott Williams & Wilkins. Unauth
regression forest. Sites 39, 207 and 211 are polymorphic
with substitutions commonly present among treatment-
naı̈ve patients [54], however, the impact of these sites for
predicting resistance was marginal (Fig. 5). It appears that
the inclusion of 211 is through association effects:
mutations at 211 were not significant for all but the
classification tree model and mutations at 210 (a known
TAM site) were significant for most of the other models.
When we replaced 211 in the classification tree with
210 we observed a negligible loss in predictive power.
Furthermore, when constructing multiple classification
trees from bootstrap samples of the data (i.e. the classi-
fication forest model) the effect of site 211 was removed
almost entirely (Fig. 5(b)). This highlights the difficulty in
deriving standardized genotypic models to predict drug
susceptibility and the importance of comparing several
different models.

In conclusion, using multiple models we have been able to
identify a subset of mutations in HIV-reverse transcriptase
that appear to be most significant for tenofovir resistance:
215, 65, 41, 67, 184, 151 and 210. We conclude that other
mutations are of marginal significance, as they appear in
only a subset of the models tested and the cross-validated
performance of the models was similar. This study
illustrates the power of amalgamative models (such as
random forests) over single models (such as linear/logistic
regression tree models and decision trees) because they are
less likely to be significantly influenced by the idiosyn-
crasies of individual datasets. These models offer an
improvement over the best performing models to date.
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